1,557 research outputs found

    The Military Profession

    Get PDF
    Having developed as an institution separated in a sense from the rest of American society and possessing a discreet set of corporate values apart from those espoused by the Nation as a whole, the military today faces an almost revolutionary challenge to some of its most dearly held practices

    Generalization of escape rate from a metastable state driven by external cross-correlated noise processes

    Full text link
    We propose generalization of escape rate from a metastable state for externally driven correlated noise processes in one dimension. In addition to the internal non-Markovian thermal fluctuations, the external correlated noise processes we consider are Gaussian, stationary in nature and are of Ornstein-Uhlenbeck type. Based on a Fokker-Planck description of the effective noise processes with finite memory we derive the generalized escape rate from a metastable state in the moderate to large damping limit and investigate the effect of degree of correlation on the resulting rate. Comparison of the theoretical expression with numerical simulation gives a satisfactory agreement and shows that by increasing the degree of external noise correlation one can enhance the escape rate through the dressed effective noise strength.Comment: 9 pages, 1 figur

    Validation and verification of the GeneFinder (TM) COVID-19 Plus RealAmp kit on the ELITe InGenius (R) instrument

    Get PDF
    Background: Throughout the SARS-CoV-2 pandemic, a rapid identification of the virus was essential to quickly recognize positive cases and limit further spread by applying appropriate infection prevention. Many diagnostic laboratories use a multiplex Real-Time PCR assay, as they are not only highly sensitive but also specific. Currently, there are several assays and platforms in the market available which target different SARS-CoV-2 genes. The aim of this study was to validate and verify the GeneFinder (TM) COVID-19 PLUS RealAmp kit on the ELITe InGenius (R) instrument and compare to the national reference method. Methods: GeneFinder (TM) COVID-19 PLUS RealAmp kit was evaluated against the routine WHO in- house RealTime PCR assay, which is also the national reference method in the Netherlands and used in our laboratory. The sensitivity was tested using the analytical panel from Qnostics (Glasgow, United Kingdom) and the specificity was tested with patient material comprising of other seasonal respiratory viruses. In addition, 96 clinical samples initially analyzed by routine Real-Time PCR were tested using the GeneFinder (TM) COVID-19 PLUS RealAmp kit on the ELITe InGenius (R) instrument. Results: The GeneFinder (TM) COVID-19 PLUS RealAmp kit had a similar performance compared to routine in-house testing, with a limit of detection of 500 dC/mL for the RdRp-gene and E gene. Meanwhile, the N gene showed a limit of detection of 50 dC/mL. The SARS-CoV-2 test was highly specific and detected no other respiratory viruses. The results of the clinical samples were comparable between both assays with similar Ct values observed for the in-house Real-Time-PCR and the GeneFinder (TM) COVID-19 PLUS RealAmp kit for the N gene. Conclusion: The GeneFinder (TM) COVID-19 PLUS RealAmp kit on the ELITe InGenius (R) instrument had an appropriate sensitivity and specificity that could be used in small scale laboratories or during night shifts where accurate diagnostics are crucial

    Interferometry with Photon-Subtracted Thermal Light

    Get PDF
    We propose and implement a quantum procedure for enhancing the sensitivity with which one can determine the phase shift experienced by a weak light beam possessing thermal statistics in passing through an interferometer. Our procedure entails subtracting exactly one (which can be generalized to m) photons from the light field exiting an interferometer containing a phase-shifting element in one of its arms. As a consequence of the process of photon subtraction, and somewhat surprisingly, the mean photon number and signal-to-noise ratio of the resulting light field are thereby increased, leading to enhanced interferometry. This method can be used to increase measurement sensitivity in a variety of practical applications, including that of forming the image of an object illuminated only by weak thermal light

    A discussion of syndromic molecular testing for clinical care

    Get PDF
    Current molecular detection methods for single or multiplex pathogens by real-time PCR generally offer great sensitivity and specificity. However, many infectious pathogens often result in very similar clinical presentations, complicating the test-order for physicians who have to narrow down the causative agent prior to in-house PCR testing. As a consequence, the intuitive response is to start empirical therapy to treat a broad spectrum of possible pathogens. Syndromic molecular testing has been increasingly integrated into routine clinical care, either to provide diagnostic, epidemiological or patient management information. These multiplex panels can be used to screen for predefined infectious disease pathogens simultaneously within a 1 h timeframe, creating opportunities for rapid diagnostics. Conversely, syndromic panels have their own challenges and must be adaptable to the evolving demands of the clinical setting. Firstly, questions have been raised regarding the clinical relevance of some of the targets included in the panels and secondly, there is the added expense of integration into the clinical laboratory. Here, we aim to discuss some of the factors that should be considered before performing syndromic testing rather than traditional low-plex in-house PCR

    Decision and function problems based on boson sampling

    Get PDF
    Boson sampling is a mathematical problem that is strongly believed to be intractable for classical computers, whereas passive linear interferometers can produce samples efficiently. So far, the problem remains a computational curiosity, and the possible usefulness of boson-sampling devices is mainly limited to the proof of quantum supremacy. The purpose of this work is to investigate whether boson sampling can be used as a resource of decision and function problems that are computationally hard, and may thus have cryptographic applications. After the definition of a rather general theoretical framework for the design of such problems, we discuss their solution by means of a brute-force numerical approach, as well as by means of non-boson samplers. Moreover, we estimate the sample sizes required for their solution by passive linear interferometers, and it is shown that they are independent of the size of the Hilbert space.Comment: Close to the version published in PR
    corecore